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Abstract. Onsager’s paper on the effect of shape on the
interaction of colloidal particles is seminal in many
ways. I shall focus on two aspects: it is (to my
knowledge) the earliest classical density functional
theory, and it demonstrates the possibility of ordering
transitions driven by entropy
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If ever the description “multifaceted” should apply to a
paper, it is to Onsager’s analysis of the effect of shape on
the interaction of colloidal particles. The primary aim
of this paper was to explain the physics behind the
formation of an anisotropic (nematic) phase in a
relatively dilute suspension of rigid, linear colloids. Here
I shall not discuss those aspects of the paper that focus
mainly on the analysis of the forces acting between
charged colloidal rods (actually not just rods) in
solution. Although this analysis makes the present paper
one of the milestones in theoretical colloid physics, |
would like to start where this part of the analysis ends —
namely with the conclusion that, to a good approxima-
tion, the interaction between charged rods in a not
too dilute salt solution is short-ranged repulsion. This
implies that, as a first approximation, it is permissible to
treat such rodlike particles as slender, hard rods.
Onsager then goes on to consider a limiting case: rods
for which the ratio of length (L) to the diameter (D)
tends to infinity. Using this description of rodlike
colloids, Onsager then proceeds to show that in such a
model, a transition from the isotropic to the nematic
phase must occur above a certain density (of order
(L*D)™).

There are several features of Onsager’s analysis that
make this paper crucial for subsequent developments.
The first is the way in which Onsager derives an
expression for the free energy of a system of thin hard

rods. What Onsager does is nothing less than write down
the free energy of the system as a functional of the
single-particle distribution function — deriving such an
expression is the central aim of all subsequent density-
functional theories, be they classical or quantum-
mechanical (see e.g. Ref. [1]). Unfortunately, we usually
do not know the true density functional, and we are
forced to make approximations. Not so in Onsager’s
case: the density functional that Onsager writes down for
infinitely thin hard rods is almost certainly exact. Per-
sonally, I would say that it is exact — it relies on the fact
that all virial coefficients higher than the second are
negligible: Onsager showed that this is plausible, and
subsequent numerical work [2] supports this claim. This
makes the Onsager density functional one of the very
few that is both nontrivial and exact. Although the
density functional that Onsager derived is exact, the free-
energy minimization cannot be carried out analytically.
Onsager found an approximate solution, using an inge-
nious ansatz for the single-particle distribution function;
however, numerically, the minimization can be carried
out to any desired accuracy. In this sense, we now know
the “‘exact” density dependence of the free energy of thin
hard rods. The Onsager approach has proven extremely
fruitful. It has been applied to a variety of model sys-
tems, including semiflexible particles [3, 4]. However,
here I will not review the subsequent work, but rather
discuss another aspect of Onsager’s paper.

The transition from the isotropic to the nematic phase
involves a partial ordering of the molecular orientations.
It is common practice to consider entropy as a measure
for the ““disorder” in a system. A naive observer would
therefore conclude that the isotropic phase must always
have a higher entropy than the nematic phase at the
same density and energy. In this picture, ordering can
only occur due to a lowering of the energy, such that the
free energy of the system decreases upon going from the
metastable isotropic to the stable nematic phase, as
required by thermodynamics. However, the Onsager
model is a hard-core model: this means that, at a given
temperature, the energy does not depend on density.



Hence, all spontaneous phase transformations must in-
volve an increase in entropy. In other words at a given
density, the ‘“ordered” nematic phase has a higher
entropy than the “disordered” isotropic phase. The
ordering of hard rods is an example of an entropic phase
transition. Although counterintuitive at first, no laws of
physics are violated: sure enough, the orientational en-
tropy of the nematic phase is lower than that of the
isotropic phase; however, this loss in orientational en-
tropy is more than offset by the increase in translational
entropy. As the particles align, their excluded volume
decreases and hence they are able to explore a larger
fraction of the volume without overlapping with other
particles — this causes the translational entropy to
increase.

A second important example of an entropic phase
transition is the freezing transition of hard spheres. The
first direct evidence for this transition came from the
computer simulations of Wood and Jacobson, and Alder
and Wainwright [5]. Initially, these results were received
with a lot of scepticism (see, e.g. Ref. [6]); however, in
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recent years, it has become apparent that entropic phase
transitions are quite common, not only in computer
models, but also in real systems (mainly colloidal dis-
persions: see e.g. Ref. [7]). However, the concepts, the
basic physics, were all contained in Onsager’s paper.
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